[1] "tbl_df" "tbl" "data.frame"
[1] "list"
class() and typeof(), respectively, to determine the class and basic type of an objectstr() function produces a concise summary of the structure of the objectClasses 'tbl_df', 'tbl' and 'data.frame': 53940 obs. of 10 variables:
$ carat : num 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ...
$ cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 ...
$ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 5 2 5 ...
$ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 6 7 3 4 5 ...
$ depth : num 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ...
$ table : num 55 61 65 58 58 57 57 55 61 61 ...
$ price : int 326 326 327 334 335 336 336 337 337 338 ...
$ x : num 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ...
$ y : num 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ...
$ z : num 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ...
$ or [[ to subset columns from a data frame int [1:53940] 326 326 327 334 335 336 336 337 337 338 ...
[1] TRUE
table() to count occurrencesprop.table() for proportionsClasses 'tbl_df', 'tbl' and 'data.frame': 53940 obs. of 10 variables:
$ carat : num 0.23 0.21 0.23 0.29 0.31 0.24 0.24 0.26 0.22 0.23 ...
$ cut : Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 ...
$ color : Ord.factor w/ 7 levels "D"<"E"<"F"<"G"<..: 2 2 2 6 7 7 6 5 2 5 ...
$ clarity: Ord.factor w/ 8 levels "I1"<"SI2"<"SI1"<..: 2 3 5 4 2 6 7 3 4 5 ...
$ depth : num 61.5 59.8 56.9 62.4 63.3 62.8 62.3 61.9 65.1 59.4 ...
$ table : num 55 61 65 58 58 57 57 55 61 61 ...
$ price : int 326 326 327 334 335 336 336 337 337 338 ...
$ x : num 3.95 3.89 4.05 4.2 4.34 3.94 3.95 4.07 3.87 4 ...
$ y : num 3.98 3.84 4.07 4.23 4.35 3.96 3.98 4.11 3.78 4.05 ...
$ z : num 2.43 2.31 2.31 2.63 2.75 2.48 2.47 2.53 2.49 2.39 ...
summary() function returns the quartiles, among other informationsummary(diamonds$price))cut variable Ord.factor w/ 5 levels "Fair"<"Good"<..: 5 4 2 4 2 3 3 3 1 3 ...
cut variable are:| variable | description |
|---|---|
| crim | per capita crime rate by town |
| zn | proportion of residential land zoned for lots over 25,000 sq.ft. |
| indus | proportion of non-retail business acres per town |
| chas | Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) |
| nox | nitric oxides concentration (parts per 10 million) |
| rm | average number of rooms per dwelling |
| age | proportion of owner-occupied units built prior to 1940 |
| dis | weighted distances to five Boston employment centres |
| rad | index of accessibility to radial highways |
| tax | full-value property-tax rate per $10,000 |
| ptratio | pupil-teacher ratio by town |
| lstat | % lower status of the population |
| medv | Median value of owner-occupied homes in $1000’s |
| Measure | Type | Sensitive to Outliers? | Notes |
|---|---|---|---|
| Mean | Center | Yes | Strongly affected by extreme values |
| Median | Center | No | Robust; not affected by outliers |
| Mode | Center | No | Not affected by outliers |
| Range | Spread | Yes | Determined by min and max values |
| Variance | Spread | Yes | Squared deviations amplify outliers |
| Standard Deviation | Spread | Yes | Derived from variance; sensitive |
| Interquartile Range | Spread | No | Only uses middle 50% of data |